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We consider the game problem of the encounter of a conflict-controlled phase 
point with a specified target set M. We give an upper bound of the result 
achieved by feedback control in nonregular cases. The construction is based 

on the ideas in [ 1, 21. 

1. We consider a controlled system described by the differential equation 

I.’ = A (t) x $- B (t) u - C (t) v (1.1) 

Here 5 is the system’s n-dimensional phase vector; _4 (t), B (t) and c’ (t) are con- 
tinuous matrices ; u and 1; are the r-dimensional vectors of the controlling forces at 

the disposal of the first and second players,respectively. The realizations ZL ltl, u ltl 

of controls 11 , u are constrained by the conditions 

u ItI F= P, u[tlEQ (1 *a) 

where 1' and Q are closed, bounded, and convex sets. We examine the conflict prob- 

lem of the encounter of the point IC [t 1 with a specified closed convex set AT: the first 
player’s aim is the encounter, the second player’s aim is to prevent it. The problem is 
considered on a fixed time interval It,, 61. As the game’s cost we choose the quan- 
tity 

y = p (z [61, M) (1.3) 

where the symbol f’ (x, ill) denotes the distance from point x to set hl. We shall 
adhere to the definitions presented in [l] for the player’s strategy classes and for the 
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corresponding motions. 

Integrable functions II (t) and v (I) satisfying the conditions 16 (l) i-_I I-’ and u (t)~ 

Q for almost ail t 2 f, are tailed admissible program controls. We say that for a 
given LX It,I =-; 50 the first player’s strategy b’ (t, 2) guarantees the encounter of point 
5 [tl with set M at the instant 6 at a distance y. if the motions 3 [t] generated by 

this strategy satisfy the condition 

max,p] p (II: [+I, Ml = YO V-0 (1.4) 

where the maximum is computed over all points 5 [$l] = 5 [S; t,, x0, U] to which 
startegy .rJ carries system (1.1) at the instant 6. 

2, Below we discuss the solution of the encounter problem, propose a modification 
of the method of extremal aiming, and give an estimate of the magnitude of 70 (u,) 
corresponding to the encounter strategy TJ,. constructed in this paper. Let us introduce 
some notation and definitions, By the symbol w (t, 6, E) we denote the collection of 
all points x for which the set fif, is absorbed in a program manner by process (1.1). 
(1.2) from the position {t, X} at the instant fi [l]. The symbol M, here denotes the 
closed E -neighborhood of set At. From conditions (1.2) it follows that the reachable 

region X (t*, 5*, t”, u (e)) is closed and convex for all (t*, z*e), t*,v (t) (t* < 
t < t*) [3]. We recall that the reachable region X (t+, x*, t*, v ( - ff is the collec- 

tion of points x = t (t*) reached at the instant t = t* by the motions 5 (f) (& < 

t < t*) generated by a given control u = u (t) and by all possible admissible con- 

trols n = U (t) (to < t sg t”). 
Let 5* E w (t*, 6, E*). We find pairs of controls {IA* (t) , V* (t) } which solve 

where a? [t] (t* < t< 6, x fl*] = LYE*) are motions generated by the controls 

{u* (47 zJ* (f)}, and the maximin is computed over all integrable functions u (t) E 

P, u (t) f?i! Q (t* < t < 6). It is known [3] that a solution of problem (2.1) exists 
under the assumptions made above. By I’ (t, t*, r*, e*) we denote the set of func- 

tions u* (t) (t* <t < 6) on which the solution of problem (2.1) is achieved, In 
particular, this set can consist of the single function U* (t). 

Suppose that a certain position {t*. x*) has been chosen, where I+ =- 5 (t*) E 

w (t*, 6, &*). We further fix t* > t,, where t* - t, == :I > f) is a fairly smal1 
number. We take some admissible function rt == ~3, (t) (1, & t < 1”). Let us con- 

struct the reachable region xi, where X, -L- X (t, , s*, 1”) ~1 (t)). We consider 
the following mapping of set Xl into itself. We fix an initial position (t*, z* f , where 
a* tZ X,. From the solution of problem (2.1) we can find a certain set of admissible 
functions V (t, t*, LC*, e*) (t* < t ..< 6) giving the maximum to expression (2.1) 
and corresponding to the chosen initial position {t*, x*}. We now define a function 
u _ u (t) on the interval 2* < 1 .<S in the following way. Let u :~~ ~7~ (1) for 
t, & t < t*. On the semi-interval i* < f < 6 we define the function u by the 
equality v =- 2?r*, ’ where ut* E 1: ft, t*, z*, a*)_ Since J‘* E lt’ (f,. 6, F*), for 

the function v (I) (i, < I < 0) chosen above we can find a certain set of admissi- 
ble functions {U (t)} (J+ <: t < 6~) such that the pair of controls {V (t). ZL (t) ), 
where ZI (t) E {I(. (t)) leads the motion .I’ (i) (z (!,) J+.) onto the set i\le, at the 

instant t =- 6, i.e. r (@) Czz .+I,,. By examining next all functions pi, (I) which for 
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t, S$ t < t* are given by the equality Vi = v1 (t), while for t* < 2 < 6 each of 
the functions vi (t) equals a certain function ui* (t), where vi* (t) E V (t, t*, z*, 

E*) (t* < t < 6). we can establish the mapping 

{z (P)} : F (x*) (2.2) 

The set F (x*) depends by construction on the choice of the point X* E X,, i.e. 

we have constructed the mapping F (,r*). Obviously, F (z*> e X,. 

3, We prove the following auxiliary assertion. 

Lemma 3. 1. Whatever be the position {t*, x*} (cc* E u’ (t*,fi, E*) and the 
admissible function v {t) (t.+ < t < t*), the mapping &’ (xi) is upper semicontinu- 

ous with respect to inclusion relative to a variation of z*. (Here x* e X (t*, &+, 
t*, u (t)*) 

Proof. We assume the contrary. Then we can find a sequence of points x(i) E X1 
(i = I, 2 . ..) converging to the point zo * and we can select a sequence of & E P (s(i)) 

satisfying the condition z(‘) t+.F,(rro*) (i = f, 2...)(e>O). According to the construction 
of the mapping of the sei XI into itself, to the points 5,;) E X1 there corresponds a se- 
quence of functions 8) (t) (t* < t < 6), where v@) (t) E V (1, t*, zti), a*). From this sequ- 

ence we can select a weakly convergent subsequence. Using the fact that by hypothesis 
the set Q is convex, closed, and bounded, we can verify that the weak limit of this sub- 
sequence is the function urn (t) (t* < t < Ct) which for almost all t* < t < 6 satisfies the 

inclusion vrn (t) E Q and is a solution of problem (2.1) for the point Q* [l]. Conse- 
quently, the function pQ‘ (t) satisfies the inclusion Y- (t) E Ii (b, t*. x0*, e*). 

We now consider a sequence of continuous functions 8) (t) (t* < t < 8; i = 1, 2 ,..) 

formed in the following manner. The functions #) (4 are motions of system (1.1), 

(1. Z), satisfying one and the same initial condition &j (t.+.) = z*, where z+ E w (4+, 6, 
e,), as well as the condition &(t*) = .(i) , where &) E XI. Each of the motions 

$1 (t) is generated by the following pairs of controls. On the semi-interval t, < t < t* 
the control v@) (1) equals VI (t), i.e. V(~) (t) = ~1 (t) for t, f t < t*. On the semi-inter- 

val t* < t < 6 the functions ZJ(~) (t) satisfy the inclusion &) (t)~ V (1, t*, z(+), e*), i.e. 
for t* < t < 6 the functions 8) (t) are those same functions which solve problem (2.1) 
under’the initial condition z(i) (t*J E X 1. We choose admissible functions uc2) (t) ( t, < 
t < zf ) in such a way that the motions .~(~j (t) generated by the pair of controls {I&‘) (t), 
8) (t)}, issuing from the point 5 (&) = x* E TV (ta, 6, E*), satisfy the conditions 

$0 (t*) .1 #, 8) (6) E J?,* 

From the sequence of continuous functions x (i) (t) defined in this manner we can select 

a subsequence which converges uniformly to a certain function x0 (t) (tr \( t < 8) satis- 

fying the condition x0 @) E ME_ and generated by some pair of controls (u (t), v (t)} 
(t* -C t < 6), where v (t) =I vm (t) (t* < t < 6). From the construction of the mapping 
of set XI into itself there follows 

3.0 (P) 1 sq,** E F’ (To*) 

But this contradicts the assumption made, which proves the lemma, 

Obviously, from the semicontinuity of mapping F (zr) follows the semicontinuity of 
the mapping co* F (.zY), where co*F denotes the convex hull of set F. But in this case, 
taking into account that the set .x (t, t,, it’*, v (I)) is convex and closed, according 
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to a theorem in (41 we can find a point i E X which satisfies the inclusion i ET 

co*F (2). 

Let us now describe certain cons~u~~o~ which permit us to define functions 
E (ii in such a way that the corresponding sets ui (8, 6, E (t)) would possess proper- 

ties analogous to the property of strong u-stability from [ 1, ‘21. Let 2’ be a fixed point 
of the mapping co* F (t), constructed above, where 5 E X (t*, x*, t*, v). By 

r tt*, t*, n ~~)) (t, < t St*) we denote the distance from point X* to the closed 
set F (z’). We define the quantity r0 (t*, t*) from the extression 

r” (t*, t*) = sup r (& t*, v (t)) (4.1) 
v (ff 

t, < t 5g t*, u @> E Q 

We take a certain arbitrary admissible control v* (t) E Q (1, < t 4 t*). We con- 
sider X, = X(t*,x.+, t*, u* (t)), (x* E W (t*, 6, E*). Let xi be a fixed point of 
the mapping of set X, into itself, and let CE* * be that point of set F (x$) which is at 
the distance r (t*, t* , Y* (t)) from point z$ . Let us prove the following auxiliary 

assertion. 
For any function u (t) (t* < t < t*) we can find a function u (t) (t* < t < t*) 

such that the pair of controls {u (t), u (t) > carries system (1.1) from the point CC* ET5 

w (t*,e, F*) to the point x$ E &’ (t*, 6, E’), where E’.-:.F*+ rO(tye, t*) @(a-r*), 

Proof. We return once again to the mapping of set X, into itself, described above. 
We fix an initial position {t*, _zyi “} (x*’ E X,). Solving problem;% 2) for this initial 
position, we obtain a certain set of admissible functions V (t, t*, x8, E@*) (t* < 
t < 0). We define a function u* (t) (t* < t < $3) as follows. Let v* (t) = U* (t) 
for t,<t<t*, while for t* < t < 6 we define the function V* (t) by the equa- 

lity U* (t) == u *e(t). where ti ** * (t) E V (t, t* , x$, E @*f. From the construction of 
the mapping of set X, into itself it follows that for the control U* (t) (t* < t < 6) 

we can find an admissible control U’ (I) (t* .+ I t <o) such that the motion c.? (t) 

(X’ (t*) d*, t, < t < 6, where x8 tE 11’ (t*, e, Q)) generated by the pair of 

controls {I[’ (t), U* (t)) (t < t * , < ti), satisfies the conditions 

1.’ (t”) 7 _r** L’ (I?) t3 :ifz* (4.2) 

Now, from the point AT*“ (z.+O E .\*) we start off the motion x*” (t) generated 

by the pair of controls (I’, U* (t>j (1” < t<6). Here {u’ (2), L:* (t)} is the 
same pair of controls which generated the motion 2;’ (t) (I* ,i t < YY) satisfying 
conditions (4.2). We denote the distance between the points J:*O (0) and X’ (ib) 

obtained above by e” (t*) - e*. Using Gronwall’s lemma [5] we have the estimate 

eii I?“) - z:* < )” (t*, t*, U* (t)) f+Cemt-) (4.3) 

Here the value of a is found in accordance with Gronwall’s lemma. 
We note the following. From the point I,* we start off the motion .? (t) (t’ z< t < 6) 

generated by some pair of controls {tl*U {r), r, ’ cl)) (t’ 4 t < 6) solving problem (2. I) 
under the initial condition x,O --: 2’ it’). From the fact that the pair of controls (d (t), 
z’* (t)} (t* < 1< Zr) is, in general, not that pair of controls which solves problem (2.1) 
under the initial condition x*6 := X” (I’), it follows that the distance from point 5,’ (6) 

to point r’ (6) (x’ (6) E .I(,_) is not less than the distance from point 3’ (6) to itI,_ - 
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From (4.1) and (4.3) it follows that for any admissible function v (t) (t* < i! < t*) 
the estimate 

EW (t*) & E* + r @*, t*, u (t)) &.(8-t*) < E* _t r” (&, t*) @(8-‘*) = E’ (4.4) 

is valid. Since z$ E X *, for the function v* (t) (t, < t < t*) we can find an admis- 

sible function U* (t) (t* < t < t*) such that the pair of controls {u* (t), v* (t) } 
carries system (1.1) from the position X (&) = X* to the point X (t*) = z$. Thus, 
the inclusion zi E W (t *, 0, E’) is fulfilled. The auxiliary assertion is proven. 

We consider the expression r” (t, t + A) e ( A @++A)), where A > 0 is a fairly small 

number. We choose a certain summable function cp (t) satisfying the condition 

(4.5) 

From (4.5) follows the inequality 

P (G t + A) < cp (t) A + 0 (A) 

Hence we can derive the following inequality 

r” (t, t + A) eh (a-(t+*)) & ‘p (t) e).ca-QA + 0 (A) (4.6) 

Setting E’ = E (t + A), E* -: E (t) , t, = t, t* = t + A from expressions (4.4) 
and (4.6) we obtain 

E (t + A) < E (t) + ‘p (t) eA(8-t)A + 0 (A) 

Hence we have 
d+e/dt <‘p (t) e)L(8-L) 

Here the plus sign denotes the upper right derivative number of the function 8 (i!). The 

inequality !+A 

E (t + A) < E (t) + j ‘p (T) eA@-r)dr (4.7) 
t 

is fulfilled in such a case. Obviously, the inequality 

l+A 

s 
cp (.t) eh(8-r) dz > eh(a-(L+A))ro (t, t + A) (4.8) 

is fulfilled also. Taking (4.8) and the auxiliary assertion into account, we can derive 

the following assertion. 
Lemma 4.1. Whatever be the value t, from the semi-interval [to, 6), the 

point Z* from the set w (&, 6, E (t*)) , and the number A from the semi-interval 

(0, min (A,,, 6 - t*)) (A,, is a sufficiently small posirive constant), for any ad- 
missible function u (t) (t* < t < t, + A) we can select an admissible function u (t) 

(& < t St, + A) such that the pair of controls {u (t), v (t)} carries system(l.1) 
from the position 5 (t*) = X* to the state 

5 (t* + A) = z (t*) E I%’ (t*, 6, E (t*)) 
t+* 

E (t*) = E* + s 0 cp T eh(8-Qdr 
t 

5. We carry out the subsequent arguments analogously to [l]. We construct an ex- 
tremal approximating strategy U(e) based on systems of sets w (t, I!, E (t)) satisfying 
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Lemma 4.1. We construct sets uz’ (t, x), corresponding to the strategy U(e) in the 
following manner. If a point LI: is contained in the set W (t, 6, e (t)), then 

u$’ (t, z) = P (5.1) 

If, however, the point IL: is not contained in the set W (t, 6, E (t)), we proceed as fol- 

lows. In the set w (t, 6, E (t)) we pick out the collection Q* of all points q* clos- 

est to point 5. By the symbol S we denote the set of all unit vectors .s directed from 
point 2 to the points q* from Q*. Now, as Ug’ (t, X) we select the set of all vectors 
u = ue from P which satisfy the condition 

s’B (t) ue = maxu s’B (t) u (UEP) (5.2) 

for at least one S from S (the prime denotes transposition). From the definition of 

the property, analogous to the property of strong u-stability of sets W (t, 6, & (t)), 
formulated in Lemma 4.1, follows the fulfillment of the equality 

w (6,6, e (6)) = Me(B) 

E (@) = & (t,) + i cp (z) eh(8-r) dz (5.3) 
0 

In such a case, according to Lemma 3.1 in [ 11, the extremal strategy UC”) carries mo- 

tion 2 (t) from the position z (t,) = x,, E J$’ (t,. 6, EJ to 5ome point z (6) for 
which the inclusion 

J: (6) f? ME (8) 

is valid, where E (6) is determined from expression (5.3). Let E (to) := 0. From Lem- 
mas 3.1, 4.1 and from the arguments in Sect. 5 the following theorem results. 

Theorem 5.1. Let x0 E w (to, 6, e (t,)). Then the extremal strategy D’(e) 
basedonthesets W(l,o, E (t)), g uarantees the encounter of the point x (t) with the set 
M at the irlstant 6 at a distance Yo, where 

a 

yo = $ ‘p (T) e” (8-r) dr (5.4) 
(I 

Corollary. If cp (t) s 0, then from (5.4) it follows that y. s 0. Consequently, 
in this case the strategy (J(e) guarantees that point II: (t) is brought onto set M at the 
instant 6. 

Note. If the sets F (z) WOK!.: turn out to be convex, then from the arguments pre- 
sented above there would follow the identity v (t) G 0, but then, in accordance with 

the Corollary to Theorem 5.1, the strategy u(e) would bring the motion z (t) onto set 
M at the instant 6. On the other hand, from the convexity of sets F (5) it would fol- 
low that the regular case of encounter game considered in [l]. holds. The strategy con- 
structed in the paper cited guarantees the encounter of point z (t) with set M at the 
instant 6. Consequently, the nonregularity of the problem being considered and the 
growth of the function y. (t) depending on it, is connected with the nonconvexity of 
the sets &’ (z). 

We note that the arguments presented here can be applied in the nonlinear case by 

modifying the absorption instant in correspondence with [6]. 
The author thanks N. N. Krasovskii for formulation of the problem and for valuable 
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advice. and A. I.Subbotin for attention to the work and valuable remarks. 
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We consider a differential game [ l- 33 directly related to [4], where an ana- 
logous problem was analyzed for points under the action of controls alone and 

to [S), where the problem was investigated of the “soft” contact (with respect 
to coordinates and velocities) of points in a linear central field. In the present 
paper we solve the problem of the minimax time up to the “hard” contact 

(with respect to coordinates) of two points (players) with masses ,,tl and ~“2, 
moving under the action of position forces F, : - - uhlr, and /.‘s == - w%?~T? 

(rlr 1’2 are radius vectors of the points relative to the center of attraction) and 

of controls fl - ,n,tr and f2 = -- n)2~’ arbitrary in direction and bounded 

with respect to the total momentum. The first player minimizes, while the 

second maximizes, the time up to the hard contact. The whole space of pos- 
sible positions is separated into two regions. In the first region we find the 

optimal controls ofhoth players and the minimax time up to the “hard”contact. 
In the second region we form the second player’s control which he uses avoid- 
ing contact under any action of the first player. 

1. The equations of relative motion (,c -_ r-i - r?, y = r, - r2’) , after a scale 
change in length and in time reducing to the equality (,) = Z. have the form 

L’ = !/. J/’ = - J‘ + II + 17, p = - 1 I! 1, v :=- - 1 I’ / (1.1) 
i’ > 0, y:> 0 (14 


